Interface crack propagation in porous and time-dependent materials analyzed with discrete models
نویسندگان
چکیده
A model describing the crack propagation at the interface between a rigid substratum and a beam is considered. The interface is modeled using a fiber bundle model (i.e. using a discrete set of elements having a random strength). The distribution of avalanches, defined as the distance over which the crack is propagated under a fixed force, is studied in order to capture the effect of ageing and time dependent response of the interface. The avalanches depend not only on the statistical distribution of strength but more importantly on time (or displacement) correlations. Namely, local fiber breakage kinetics is related to a correlation length, which sets the size of the fracture process zone which occurs ahead of the crack due to progressive failure. First, a variation of porosity of the interface is considered. It corresponds for instance to diffusion controlled dissolution processes. Interpreting the results in [11], it is shown that the size of the fracture process zone increases with increasing porosity in accordance with experimental observations [12]. The creep fracture interaction is analyzed in the second part of the paper. It is found based on a Maxwell model that the size of the process zone depends on the fracture propagating velocity and on the distribution of forces in the interface due to the interaction between the interface and the rest of the specimen. The observed decrease of the size of the process zone, in creep experiments, compared to the size of the process zone in a static process, is justified by the proposed model for an interface that is less viscous than the rest of the material.
منابع مشابه
Application of Discrete Crack in Nonlinear Dynamic Analysis of Shahid Rajaee Arch Dam
the nonlinear discrete crack modeling of Shahid Rajaee thin arch dam is considered. The interface elements are positioned such that certain potential separated blocks can form possible failure mechanisms. The dynamic stability of theses blocks are investigated by a special finite element program "MAP-73" which its nonlinear algorithm and interface elements formulation are presented.
متن کاملSimulation of the Mode I fracture of concrete beam with cohesive models
Crack propagation modeling in quasi-brittle materials such as concrete is essential for improving the reliability and load-bearing capacity assessment. Crack propagation explains many failure characteristics of concrete structures using the fracture mechanics approach. This approach could better explain the softening behavior of concrete structures. A great effort has been made in developing nu...
متن کاملMoving Three Collinear Griffith Cracks at Orthotropic Interface
This work deals with the interaction of P-waves between a moving central crack and a pair of outer cracks situated at the interface of an orthotropic layer and an elastic half-space. Initially, we considered a two-dimensional elastic wave equation in orthotropic medium. The Fourier transform has been applied to convert the basic problem to solve the set of four integral equations. These set of ...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کاملThree-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.
In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...
متن کامل